Asset Allocation

General

Portfolio Construction

Mismeasurement of Risk

Investors tend to consider risk as an outcomeâ€”how much could be lost at the end of an investment period? Risk is typically measured as the probability of a given loss or the amount that can be lost with a given probability at the end of their investment horizon. This perspective considers only the result at the end of the investment horizon, ignoring what may happen within the portfolio along the way. We argue that exposure to loss *throughout* an investment horizon is important to investors, and propose two new ways of measuring risk: within-horizon probability of loss and continuous value at risk (VaR). Using these risk measures, we reveal that exposure to loss is often substantially greater than investors assume.

Where is the danger in measuring risk at the end of an investment period?

Financial analysts worry that means and variances used in portfolio construction techniques are estimated with error. These errors bias the resultant portfolio towards asset for which the mean is over-estimated and variance is underestimated, which may lead analysts to invest in the wrong portfolio. Additionally, financial analysts worry that higher moments, such as skewness and kurtosis, are misestimated. In that case, extreme returns occur more frequently in reality than is implied by a lognormal distribution. These estimation errors often cause investors to underestimate the probability of loss, and to overestimate the probability of gain.

Rather than focusing simply on addressing these issues (though we do address them), we focus on what we believe to be a more fundamental cause of financial failure: Investorsâ€™ wealth is affected by risk throughout a period in which it is invested, but risk is generally measured only for the termination of the period.

Figure 1: Within-Horizon Illustration

Why should we care about interim risk?

Investors care about exposure to loss throughout the investment horizon because there are often thresholds that cannot be breached if the investment is to survive to the end of the horizon. If survival is not the main concern, investors may be motivated to pay attention to within-horizon risk because they could be penalized for breaching a barrier. Consider the following:

- 1.
**Asset management**A client has a portfolio with a provision that it should not depreciate more than 10% over a 5-year investment horizon. Should the asset manager assume that the client will only review performance at the end of the investment period? Not likely. The client will review performance throughout the investment horizonâ€¦ and terminate the manager if the portfolio dips below 90% of its value at inception. To limit the likelihood of termination, the manager should consider within-horizon risk. - 2.
**Hedge-fund solvency**A hedge-fund manager who believes that the likelihood of significant loss at the end of the investment horizon is slim, leverages the portfolio to increase expected return. However, a significant decline from the value of the underlying assets from inception to any point throughout the investment horizon is much more likely than the likelihood implied by the ending distribution of a hedge-fundâ€™s assets. Additionally, significant interim loss could trigger withdrawals that might impair the hedge-fundâ€™s solvency. - 3.
**Loan agreement**A borrower is required to maintain a particular level of reserves as a condition of a loan. If the reserves fall below the required balance, the loan is called. - 4.
**Securities lending**Many institutional investors lend their securities to others who engage in short selling. These investors are required to deposit collateral with the custodian of the securities. The required collateral is typically adjusted on a daily basis, to offset changes in the values of the securities. Suppose the investor wishes to estimate the amount of additional collateral that might be required at a given probability for the duration of the loan. This value depends on the distribution of the securitiesâ€™ values throughout the term of the loan. - 5.
**Regulatory requirements**A bank is required to maintain a capital account equal to a certain fraction of its loan portfolio. A breach in this requirement will result in a fine. The probability that the bank will need to replenish the capital account to avoid breaching depends on the distribution of the ratio of the capital account to the loan portfolio throughout the planning horizon, not at the end of the horizon or a finite period within the horizon.

These examples are only a few of the many circumstances in which investors should pay attention to probability distributions that span the duration of their investment horizons.

How do you measure within-horizon exposure to loss?

We describe how to measure within-horizon risk measures in the following document

The following video presentation visually describes the concept of measuring risk continuously

Video Presentation: Within-horizon Risk Management

How can I apply within-horizon probability of loss and continuous value at risk?

1. Currency Hedging

Suppose we allocate a portfolio equally to Japanese stocks and bonds, represented by the MSCI Japan Index and the Solomon Brothers Japanese Government Bond Index. Exhibit 1 shows, based on monthly returns from January 1995 to December 1999, the standard deviations and correlations of these indexes together with the risk parameters of the Japanese yen from a U.S. dollar perspective.

Exhibit 1: Risk Parameters: Japanese Stocks and Bonds

Let us assume further that the underlying portfolio has an expected return of 7.50 percent, hedging costs equal 0.10 percent, and our risk aversion equals 1.00. Based on these assumptions, the optimal exposure to a Japanese yen forward contract is -87.72 percent. The expected return and risk of the unhedged and hedged portfolios are shown in Exhibit 2.

Exhibit 2: Expected Return and Risk

Now, let us estimate the probability of loss for the unhedged and hedged portfolios. Exhibit 3 shows the likelihood of a 10 percent or greater loss over a 10-year horizon at the end of the horizon and at any point from inception throughout the horizon for an unhedged and optimally hedged portfolio of Japanese stocks and bonds.

Exhibit 3: Probability of Loss over a 10-Year Horizon

If we were concerned only with the portfolioâ€™s performance at the end of the investment horizon, we might not be impressed by the advantage offered by hedging. But, if we instead focus on what might happen along the way to the end of the horizon, the advantage of hedging is much more apparent.

Even with the foreknowledge that we are more likely than not at some point to experience a 10 percent cumulative loss, we may consider such a loss tolerable. But what about a loss of 25 percent or greater? Again, calculating the probabilities indicates that, although the impact of hedging on end-of-period outcomes is unremarkable, it vastly reduces the probability of a 25 percent or greater loss during the investment horizon. Although many investment programs might be resilient to a 10 percent depreciation, they are less likely to experience a decline of 25 percent or more without consequences.

Now, let us compare VaR measured conventionally with continuous VaR for the hedged and unhedged portfolios. Table 4 reveals that the improvement from hedging is substantial whether VaR is measured conventionally or continuously. For example, measured conventionally, hedging improves VaR from a 5 percent chance of no worse than a 14.68 percent loss, to a 5 percent chance of no worse than a 26.52 percent *gain*. More important, however, is the substantial difference between VaR measured conventionally and VaR measured continuously (within-horizon). Continuous VaR is more than twice as high as conventional VaR for the unhedged portfolio, and when the portfolio is hedged, continuous VaR shows a substantial loss compared with a substantial gain when it is measured conventionally.

Exhibit 4: Value at Risk (5%) over a 10-Year Horizon

2. Leveraged Hedge Fund

Now consider the implications of these risk measures on a hedge fundâ€™s exposure to loss. Supposed we are interested in a hedge fund that uses an overlay strategy, which has an expected incremental standard deviation of 5 percent. This hedge fund also leverages the overlay strategy. Exhibit 5 shows the expected returns and risks of the hedge fund and its components for varying degrees of leverage.

Exhibit 5: Leveraged Hedge-Fund Expected Return and Risk

The data in Table 5 assume that the underlying asset is a government note with a maturity equal to the specified three-year investment horizon and that its returns are uncorrelated with the overlay returns. Managers sometimes have a false sense of security because they view risk as an annualized volatility, which diminishes with the duration of the investment horizon, but as we have noted, the fundâ€™s assets may depreciate significantly during the investment horizon. Figure 2 compares the likelihood of a 10 percent loss at the end of the three-year horizon with its likelihood at some point within the three-year horizon for various leverage factors (e.g., 2 to 1). Figure 2 reveals that the chance of a 10 percent loss at the end of the horizon is low, but there is a much higher probability that the fund will experience such a loss at some point along the way, which could trigger withdrawals and threaten the fundâ€™s solvency.

Figure 2: Probability of 10% Loss over a Three-Year Horizon

The same issue applies if exposure to loss is perceived as VaR. Figure 3 shows the hedge fundâ€™s VaR for various leverage factors measured conventionally and continuously. Whereas conventional VaR for leverage factors less than 6 to 1 is negative (a gain) and still very low for leverage factors up to 10 to 1, continuous VaR rangers from approximately 10 percent of the portfolioâ€™s value to approximately 40 percent of its value.

Figure 3: Value at Risk (5%) over a Three-Year Horizon

Conclusion

Investors measure risk incorrectly if they focus exclusively on the distribution of outcomes at the end of their investment horizons. This approach to risk measurement ignored intolerable losses that might occur throughout an investment period, either as the result of the accumulation of many small losses or from a significant loss that later (possibly, too late) recovers.

To address this shortcoming, we have introduced two new approaches to measuring risk â€” within-horizon probability of loss ad continuous VaR. Our applications of these measures in reasonable scenarios illustrates vividly that investors are exposed to far greater risk throughout their expected investment periods than end-of-horizon risk measures indicate.

Risk Management - Previous

Financial Turbulence Risk Management

Next - Risk Management

Rethinking Exposure to Loss

Last modified 1yr ago

Copy link

Contents

Where is the danger in measuring risk at the end of an investment period?

Why should we care about interim risk?

How do you measure within-horizon exposure to loss?

How can I apply within-horizon probability of loss and continuous value at risk?

1. Currency Hedging

2. Leveraged Hedge Fund

Conclusion